Journal of Organometallic Chemistry, 277 (1984) 439-441 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

TRANSFORMATION OF ORGANIC COMPOUNDS IN THE PRESENCE OF METAL COMPLEXES

II *. REDUCTION OF ALKYL-SUBSTITUTED CYCLOHEXANONES VIA HYDROGEN-TRANSFER REACTIONS CATALYSED BY RHODIUM(I) COMPLEXES

K. FELFÖLDI, I. KAPOCSI and M. BARTÓK Department of Organic Chemistry, József Attila University, Szeged (Hungary) (Received June 28th, 1984)

Summary

Catalyst systems prepared in situ from bidentate phosphines $(Ph_2P(CH_2)_nPPh_2)$, where n = 1-4) and from $[Rh(COD)Cl]_2$ proved to be active in the transfer hydrogenation of alkylcyclohexanones (alkyl = 2-Me, 4-Me, 4-t-Bu, *cis*-2,6-Me₂). With the exception of 4-methylcyclohexanone, which gave a *cis / trans*-cyclohexanol ratio of ~ 1, mainly *cis* alcohols were formed, their amounts increasing in proportion to the value of *n*. No reduction occurred in the case of 2-t-butyl- and 2,6-di-t-butyl-cyclohexanones.

Introduction

Numerous rhodium and iridium complexes containing various ligands are known to catalyse the transfer hydrogenation of ketones in the presence of isopropanol [1].

The stereochemistry of the hydrogenation depends considerably on the metal complex used, and on the bulk and position of the alkyl groups on the ring. The main product from 2-methylcyclohexanone is the *cis* alcohol [2], whereas from 4-alkylcyclohexanones, depending on the metal complex, either the *cis* [3,4] or the *trans* [3,4] alcohol is predominantly formed.

It was recently reported that the transfer hydrogenation of 4-t-butylcyclohexanone in isopropanol, in the presence of KOH, with complexes of the type $[Rh(diene)P_2]^+$ ($P_2 = Ph_2P(CH_2)_nPPh_2$, n = 2-4) gives a mixture of *cis*- and *trans*-4t-butylcyclohexanol containing 69-76% *trans* isomer, the activity of the catalyst depending on the value of n [5].

^{*} For Part I see ref. 7.

Results and discussion

Our experimental results revealed that catalyst systems prepared in situ from $[Rh(COD)Cl]_2$ and bidentate phosphines are active in the transfer hydrogenation of alkyl-substituted cyclohexanones under conditions similar to those used for the cationic complexes (Tables 1 and 2). Whereas the cationic complexes yielded more of the *trans* isomer [5], we found that under certain conditions a *cis/trans* alcohol ratio > 1. The increase of *n* resulted in a larger amount of the *cis* isomer. Formation of the *cis* isomer was similarly favoured by increasing the bulk of the substituent (t-Bu in place of Me), and by the approach of the alkyl group to the carbonyl group (2-Me in place of 4-Me).

 α -Substituents cause steric hindrance and therefore decrease the rate of the reaction. The presence of the bulky alkyl groups in 2-t-butyl- and *cis*-2,6-di-t-butyl-cyclohexanone inhibited the reduction completely.

Experimental

The ketones were from Fluka, the bidentate phosphine ligands $(Ph_2P(CH_2)_nPPh_2, n = 1-4)$ were from Ventron, and $[Rh(COD)Cl]_2$ was made according to ref. 6. Gas chromatographic studies were carried out on a Chrom 4 apparatus: 3.6 m 5%

TABLE 1

Phosphine ^b	4-Methyl			4-t-Butyl		
	Time (h)	Conversion (%)	cis-Isomer (%)	Time (h)	Conversion (%)	cis-Isome (%)
DPM	1	99	38	1.2	100	45
DPE	0.5	100	46	0.7	100	57
DPP	0.5	97	46	0.5	100	60
DPB	0.5	93	52	0.7	100	61

REDUCTION OF 4-ALKYL-SUBSTITUTED CYCLOHEXANONES WITH RHODIUM(I) COMPLEXES PREPARED IN SITU FROM $[Rh(COD)Cl]_2^{a}$

^a Reactions were carried out in refluxing i-PrOH (5 ml) under nitrogen. [Rh(CO)Cl]₂ concentration was 1×10^{-5} M; [P]/[Rh] = 2, [KOH]/[Rh] = 10, [substrate]/[catalyst] = 250. ^b PPh₂(CH₂)_n PPh₂, DPM: n = 1, DPE: n = 2, DPP: n = 3, DPB: n = 4.

TABLE 2

REDUCTION OF α -ALKYL-SUBSTITUTED CYCLOHEXANONES WITH RHODIUM(I) COM-PLEXES PREPARED IN SITU FROM [Rb(COD)CI]₂^{*a*}

Phosphine	2-Methyl			cis-2,6-Dimethyl		
	Time (h)	Conversion (%)	<i>cus</i> -Isomer (%)	Time (h)	Conversion (%)	<i>cus</i> -Isomer (%)
DPM	5	56	52	5	52	78
DPE	5	58	77	5	67	81
DPD	5	60	80	5	51	93
DPB	5	60	85	5	63	95

" Reactions were carried out as reported in Table 1.

Carbowax 20/Chromosorb P column, flame ionization detector, nitrogen carrier gas. A Digint 34 μ integrator was used for quantitative evaluation.

Acknowledgements

The authors gratefully acknowledge the support provided by the Hungarian Academy of Sciences (Grant No. 319/82/1/3) and by the Hungarian Ministry of Education (Grant No. 40/1981).

References

- G. Mestroni, A. Camus and G. Zassinovich, in R. Ugo (Ed.), Aspects of Homogeneous Catalysis, Vol.
 4, D. Reidel Publishing Company, Dordrecht, 1981 p. 71, and references cited therein.
- 2 H.B. Henbest and T.R.B. Mitchell, J. Chem. Soc. C, (1970) 785.
- 3 Y.M.Y. Haddad, H.B. Henbest, J. Husbands, T.R.B. Mitchell and J. Trocha-Grimshaw, J. Chem. Soc. Perkin Trans. I, (1974) 596.
- 4 P. Svoboda and J. Hetflejš, Collect Czech. Chem. Commun., 42 (1977) 2177.
- 5 R. Spogliarich, G. Zassinovich, G. Mestroni and M. Graziani, J. Organomet. Chem., 198 (1980) 81.
- 6 J. Chatt and L.M. Venanzi, J. Chem. Soc., (1957) 4735.
- 7 K. Felföldi and M. Bartók, J. Mol. Catal., in press.